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The closure problem in turbulence is briefly reviewed, and

some simple closure schemes are introduced. Processes occur-

ring in turbulent flow are discussed on the basis of solutions

for some elementary flows such as homogeneous turbulence with

and without uniform shear. Closure by specification of initial

conditions, and finally practical closure schemes for more com-

plicated flows (e.g., pipe flows) are considered briefly. The

latter include Reynolds stress, eddy viscosity, and mixing-

length closures.

The origin of the closure problem in turbulence was dis-

cussed in some of the earlier papers in this volume. Herein we

briefly review the closure problem and introduce simple closure

schemes in order to obtain solutions for some simple flows.

These solutions will be used to illustrate the processes occur-

ring in turbulence. Closure by specification of initial condi-

tions will then be considered. Finally, practical closure

schemes for more complicated flows, such as boundary layers and

pipe flows will be discussed.

In order to illustrate the important processes of turbu-

lence dissipation and turbulence transfer between wave numbers

or eddy sizes we first consider a statistically homogeneous

turbulent field without mean gradients. Such a turbulence will

decay with time since no energy is added to the system, 
and so

we must consider an. initial value problem. The turbulence must

be generated initially by some means, as by flow through a

grid.

We start the analysis by writing the Navier-Stokes equa-

tions at two arbitrary points P and P' in the turbulent

fluid, separated by the vector r. (See Fig. 1, where the sub-

scripts in the equations can take on the values 1, 2, or 3,
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and a repeated subscript in a term indicates a summation. The

quantities ui and uj are instantaneous velocity components,
xi is a space coordinate, t is the time, p is the density,

v is the kinematic viscosity and p is the instantaneous
pressure.) Then we multiply the equation at point P through

by a velocity component at P', and that at P' by a velocity

component at P, add the equations, take average values and
finally arrive at the equation involving correlations between

quantities at points P and P' shown at the bottom of Fig-
ure 1.1 Besides velocity-velocity correlations, the equation

contains pressure-velocity correlations and triple-velocity

correlations. The equation can be converted to spectral form

by taking its three-dimensional Fourier transform and setting
i = j, as shown at the top of Figure 2, where K is the wave

number, E is the energy spectrum function, and W is the

energy transfer term due to triple correlations. 1 Note that

this operation also converts the partial differential equation
to an ordinary one. The various terms in the spectral equation

can be interpreted by multiplying the equation through by a

wave-number band of width dK and referring to the sketch in

Figure 2. The energy spectrum function E gives contributions

from various eddy sizes to the total turbulent energy. The

area under the spectrum curve is thus equal.to the total tur-

bulent energy uiui/2. The first term in the spectral equation
represents the rate of change of turbulent energy in the cross-
hatched wave-number band. The next term W di represents the

net rate of transfer of energy into the wave-number band by

nonlinear effects; that is by the triple correlation term in

Figure 1. Finally, the last term 2vK 2E dK represents the

rate at which turbulent energy is dissipated within the wave

number band by viscous action. The dissipation term is always

negative, in contrast to the transfer term. Note that a spec-

tral equivalent of the pressure-velocity correlations is absent

in this equation for E dK the total turbulent energy in a

wave number band. This indicates that the pressure-velocity
correlations do not contribute to the rate of change of the

turbulent energy but they can transfer energy between its di-

rectional components.

Unfortunately the spectral equation contains two unknowns,

E and W, so that we cannot in general obtain a solution with-

out more information. That is, of course, a manifestation of

the closure problem in turbulence, and is a consequence of the

nonlinearity of the original Navier-Stokes equations. However,

if the turbulence is sufficiently weak, the inertia or transfer

term W will be negligible, and we can obtain, subject to par-

ticular initial conditions, che remarkably simple solution

shown at the bottom of Figure 2.1 J0 and t0 are constants

2



Turbulence Processes and Simple Closures

that depend on initial conditions. Although this solution ap-
plies only to very low Reynolds numbers, it can be used to
study the viscous dissipation, the only turbulence process ac-
counted for in its derivation. If we set 3E/aK = 0, we get
l/--vV(t - to) for Km, the wave number at which E is a maxi-

mum. Thus as time increases, the turbulent energy shifts to
lower wave numbers, or to larger eddy sizes. The physical in-
terpretation of this shift is that the smaller eddies die out
faster than the larger ones because of the larger velocity
gradients (larger shear stresses) between the smaller eddies.
The essence of the turbulence dissipation process appears to be
that the dissipation is always negative and that it affects
mainly the smaller eddies.

Unless the turbulence level is very low, as in the final
period of decay, the inertia or transfer effects will not be
negligible (W # 0), and so we would like to be able to take
them into account in some way. A large number of proposals for
calculating the transfer function W have been iven including
those of Heisenberg,2 Kovasznay,3 and Kraichnan.4  There are in
fact almost as many proposals for the transfer function as
there are workers in turbulence. For our purposes it will be
sufficient to consider a simple deductive approach which is es-
sentially a perturbation on the solution for the final period
of decay.5 ,6

In carrying out the analysis we consider in addition to
the two-point correlations of Figure 1, three, and sometimes
four or more points. Thus, we can write the Navier-Stokes
equations at three and at four arbitrary points in the turbu-
lent fluid, as in Figure 3. We can then construct three-point
correlation equations involving triple and quadruple correla-
tions, and four-point equations involving quadruple and quin-
tuple correlations, as shown in the figure. However, there
are still more unknowns than there are equations, again as a
result of the nonlinearity of the Navier-Stokes equations. To
make the system of equations determinate, we use an operation
similar to that used for the final period of decay, but instead
of assuming that the turbulence is weak enough to neglect the
inertia term in the two-point equation, we assume only that it
is weak enough to neglect the inertia term in the highest-order
equation considered. Herein, in order to give the simplest
possible representation of the transfer or inertia process, we
use only two- and three-point equations, 5 although the analysis
has also been carried out for four points. 6 Thus, neglecting
the quadruple correlations in the three-point equation gives a
determinate set of equations that should be applicable at times
somewhat before the final period.

3
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The resulting energy transfer spectra are plotted in Fig-
ure 4.5 They are negative at small wave numbers and positive

at higher ones, indicating that energy is transferred out of

the low wave-number region and into the higher wave-number re-

gion. The net areas under the curves are zero, since the term

makes no contribution to the rate of change of the total turbu-

lent energy. The transfer of energy to the high wave number or

small eddy region can be thought of as a breakup of big eddies

into smaller ones, or alternatively as a stretching of vortex
filaments (to smaller diameters).

Calculated energy spectra are plotted for various times in
Figure 5.5 The curves show how the spectrum changes shape

with time and approaches that for the final period. For small

times the inertia or transfer terms transfer energy into the

high wave number or small eddy region and cause the slopes on

the high wave number sides of the spectra to be less steep than

they are at larger times, when the spectrum assumes a more or

less symmetrical shape. Thus, the function of the inertia
terms in the equations is to excite the higher wave number or

small eddy regions of the spectrum by transferring energy into
those regions. If it were not for inertia effects, those re-

gions of the spectra would be absent, as they are in the final
period of decay.

Inertia and dissipation tend to shift the energy in oppo-

site directions on the wave-number scale. However, the mechan-

isms for the two effects appear to be different. Whereas in-

ertia tends to transfer the energy to higher wave numbers by a
breakup of large eddies into smaller ones (or by a stretching
of vortex filaments), dissipation tends to shift the energy to

smaller wave numbers by selective annihilation of eddies, the
small eddies being the first to go. As the turbulence decays,
the dissipation effects must, of course, eventually win out,
since the inertia effects become negligible at the low Reynolds
numbers occurring at large times.

Before going on to the effects of mean gradients on tur-

bulence, I should like to briefly consider closure by specifi-
cation of initial conditions. In the closure methods just con-

sidered, we note that as we use more points in the turbulent
field, or higher-order correlation equations, we have to

specify more initial conditions to solve the set of equations

(since there are more dependent variables). This is in addi-
tion to the closure assumption which must be made for the high-
est order correlation. If we are willing to specify multiple
initial conditions, as indeed we must for a complete specifica-
tion of the initial turbulence,1 there is an alternative way of
looking at the problem which does not require an assumption for
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the highest order correlation. It is not hard to show that,

given the initial multipoint correlations and their correlation

equations, all of the time derivatives of the turbulent energy
tensor and of other pertinent turbulence quantities can be cal-

culated.7 These time derivatives can then be used in a series

to calculate the evoluation of the turbulent energy tensor (or

of the equivalent energy spectrum tensor) and of other turbu-

lence quantities.

When the turbulence is treated in this way, we no longer

have the usual problem of closing an infinite set of correla-

tion or spectral equations. The correlation equations are used

only to relate the correlations at an initial time to their

derivatives, and those correlations must be given in order to

have a complete specification of the turbulence at that time.

Of course, in practice only a small number of the correlations,
and thus of their time derivatives will ordinarily be available

but a sufficient number may be known to give a reasonably good

representation. In the theory of Ref. 7 it was found that by

specifying n spectra at an initial time, where n is an odd

integer greater than or equal to 3, the evolution in time of

those n spectra was predictable. Good agreement with exper-

imental data was obtained for n = 3 or 5.7 ,8

It may be that the nature of the problem is such that

three or more spectra have to be specified initially in order

to calculate the evolution of any of them (except for weak tur-

bulence). However, particularly in an applied problem, three

or more initial spectra will often not be available. In that

case possible courses of action are first, the required initial

spectra might be estimated from previous experimental or ana-

lytical results or second, the introduction of physical or

mathematical hypotheses into the theory might be allowed. In

Ref. 9 the latter course of action is followed by assuming that

the energy transfer is a function of the initial conditions and

of the energy at K. By allowing that hypothesis it is found

that by specifying only two initial spectra, E and W, the

evolutions of those spectra are predictable. The results are

compared with experiments in Figures 6 to 8, where A is a

constant for the initial conditions. As in the theory of
Ref. 7 the present theory9 contains no adjustable constants or

functions.

We turn now to the important case of turbulent shear flow.

In order to consider a solvable problem in which we can study

the turbulence processes associated with the mean shear, we use

for our model a homogeneous turbulent field with a uniform mean

shearing velocity gradient. Since we have already considered

the energy transfer process, it is assumed in this case that

5
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the interaction between the turbulence and the mean gradient is

large compared with the turbulence self-interaction. Thus, we
need only consider the two-point correlation equations, since

we can close them if we neglect the self-interaction or triple
correlation terms by comparison with the mean gradient terms.

The analysis is similar to that just described, except that we

break the velocity into mean and fluctuating components. In

that way we obtain equations for the uiuj and their Fourier
transforms in the presence of a uniform velocity gradient.

10

The resulting equation for the energy spectrum is

UIE U UI
= P + T- - 2vK 2 E

at ax2  ax2

As in the equation at the top of Figure 2, the first term gives
the rate of change of the energy spectrum function E at wave

number K. The next term is proportional to the mean shearing
velocity gradient, and P(K) in that term is proportional to a

spectral component of the turbulent shear stress. That term

is thus interpreted as a production term by which energy is
produced at wave number K by work done by the velocity gradi-

ent on a spectral component of the turbulent shear stress.

The third term is also proportional to the mean velocity

gradient, but we interpret it as a transfer term rather than as

a production term. That is because if we integrate the term

over K from 0 to -, we get the result 0 .1u The term gives
zero contribution to the rate of change of the total turbulent

energy, but it can transfer energy between wave numbers. Thus,
although we neglect triple correlations, we still get an energy

transfer T which appears similar to that produced by triple
correlations. The difference between the two cases is that,

whereas in the case of triple correlations, the transfer is

produced by the nonlinear action of the turbulence on itself,
in the present case it is due to the external action of the

mean velocity gradient on the turbulence. However, the results

in both cases are similar, as shown in Figure 9 for a particu-
lar initial condition.10 Since the dimensionless transfer
term is primarily negative at low wave numbers and positive at

higher ones (net area = 0), the energy transfer is mostly from
small to large wave'numbers, as is the case for energy transfer

by triple correlations. The reason the dimensionless T* can
increase with time is that T* itself contains time.10

Finally, the last term in the spectral equation is again
the dissipation term.

6
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Plots of the energy spectrum, production term, and dissi-

pation term for a particular time are shown (normalized 
to the

same height) in Figure 10.10 From these we can summarize the

history of the turbulent energy as follows. The energy comes

into the turbulent field from the mean velocity field mainly

through the large eddies. This energy is then transferred from

the big eddy region to the small eddy region by the transfer

term just discussed. Physically this transfer might be thought

of as being produced by the stretching of turbulent vortex fil-

aments by the mean velocity gradient. Finally the energy is

dissipated in the small eddy region by viscous action. It is

physically reasonable that the dissipation should occur mainly

in the small eddy region since the shear stress should be

greater between the small eddies than between the 
larger ones.

The energy resides in a region between the production and dis-

sipation regions, as shown by the plot of the energy 
spectrum.

By using realistic initial conditions the analysis has

been compared with experiments for uniformly sheared turbulence

in Ref. 11. Some of the results are shown in Figures 11 and 12.

The agreement is good, including a negative region in one of

the two-point correlation curves.

Although the agreement between theory and experiment is

good for the data shown in Figures 11 and 12, it should be

pointed out that the results are not directly applicable 
to

fully developed inhomogeneous flows (e.g., pipe flows), since

all of the predicted components of the turbulence decay at

large times. This is shown by the dashed curves in Fig-

ure 13.12 The decay apparently occurs because there are no
2 12 the

production terms in the full equations for u2 and u3 , the

transverse turbulence components. In order to test that hy-

pothesis, u2 and u2 were arbitrarily set equal to (1/2)u2.

The solid curves in Figure 14 indicate that when this is done,

all of the components grow at large times.

Thus, for simulating a sustained turbulence it is impor-

tant that the energy remain distributed among the various 
di-

rectional components of the turbulence. One way of maintaining

this directional distribution (other than by forcing it 
as in

Fig. 13) is by stretching the turbulence 
in the direction of

flow as it is being sheared (Ul/3xl > 0). This action tends

to put energy into the transverse components, so that the tur-

bulence is maintained at large times. This is shown by the

solid curves in Figure 14,12 where all of the turbulence 
com-

ponents grow at large times.

7
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In a fully developed pipe flow, where longitudinal strain-

ing is absent, the distribution of the turbulent energy between

its directional components might be maintained by an interac-

tion of triple correlations with the pressure-velocity correla-

tions. That effect was neglected in the analysis considered

here, although the effect of mean gradients on the pressure-

velocity, correlations was included. Inhomogeneities in the

turbulent field may also have a directional redistribution ef-

fect on the turbulent energy.1 3

This discussion leads us to a consideration of more com-

plicated turbulent flows than those considered thus far, such

as those in boundary layers and pipes. A fully developed tur-

bulent pipe flow may seem simple, but in reality it is exceed-

ingly complicated when approached from a fundamental stand-

point. A complete solution for an inhomogeneous turbulent

shear flow has not been obtained, although some progress has

been made in Ref. 13. Work to obtain a more complete solution

is currently in progress, but it is too early to say whether it

will be successful.

The complete two-point correlation equations for the

double velocity and pressure-velocity correlations for an in-

homogeneous flow with mean velocity gradients are given in

Ref. 10. The principal process occurring in inhomogeneous tur-

bulence which has not been considered thus far is turbulence

diffusion between regions of higher and lower turbulence inten-

sity. We have not been able to obtain solutions to illustrate

the diffusion process, except for viscous diffusion. 1 0 Since

the two-point equations for inhomogeneous turbulence are ex-

tremely complex, we content ourselves here with considering

only the one-point equations, the equations for the mean flow.

Those equations arel I

aui Ui + Ui (1)
at k 8xk  p axi xk uik (i)

where the overbars and the Ui designate mean values. These

equations were obtained from the Navier-Stokes equations by

breaking the instantaneous velocities and pressures into mean

and fluctuating components. The system of equations is closed

in this case by introducing assumptions for the uiuj .

It is an interesting observation that as we have gone from

comparatively simple to more complex systems we have been

forced to consider less points in the turbulent fluid, and to

use lower-order closures. Thus for homogeneous turbulence

without mean gradients we were able to obtain a solution by

8
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closing the three- or four-point correlation equations. When

uniform mean gradients were added, closure was obtained at the

two-point level. Finally for inhomogeneous turbulence we will

consider only the one-point equation (Eq. (1)). Many workers.

have also used higher-order one-point equations, which are
somewhat easier to solve than the higher-order multipoint equa-
tions. Some of those methods will be considered in later
papers in this volume. However, it should be pointed out that
when higher-order one-point equations are introduced, the num-
ber of unknowns goes up faster than the number of equations, so

that the amount of empirical information which must be supplied
is greatly increased. Nevertheless, such equations have been

found useful in some cases.

If we restrict our attention to flows for which the
boundary-layer assumptions are applicable, the only component

uiuk in the Equation (1) which we need consider is ulu 2 , the
Reynolds shear stress, where the shear velocity gradient is

aUl/ax 2 . The above system of equations then reduces to a

single equation. One flow for which that equation can be

easily closed is that in a moderately short boundary layer with

a severe pressure gradient. It is shown in Ref. 14 that for

this case ulu2 can be considered as frozen at its initial

given values as it is convected along stream lines. Theoreti-

cal velocity profiles and Stanton numbers (dimensionless heat
transfer coefficients) are compared with experiment in Figures

15 and 16.14,15 The quantity Tw is the shear stress at the

wall. For obtaining the heat transfer results, an energy
equation similar to the above equation for the mean flow

(Eq. (1)) was used in addition to that equation. The agreement

between theory and experiment is considered good.

The above analysis is an example of a case in which clo-

sure can be obtained in a simple manner at the Reynolds stress
level. For longer boundary layers, or for less severe pressure
gradients, the simplification used breaks down, and so other
less deductive methods have to be used. The reason a solution

could be obtained is that for the case considered, the given
initial conditions were all-important. At the other extreme
we have fully-developed flows, where initial conditions have no

effect at all on the turbulence. For that case and for other,
intermediate, cases; we generally employ simple models based on

physical reasoning and dimensional analysis. As mentioned

above, if we make the boundary-layer assumptions, we need con-

sider only the ulu2  component of the Reynolds stress uiuj
in the one-point Equation (1).

There are at least three types of closure schemes we can
use. First, we can make an assumption for ulu2 directly

9
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(Reynolds shear-stress closure). Second, by analogy with the

molecular viscosity, we can introduce an eddy viscosity e

given by

u lu 2 - - aUl /@x 2  (2)

and make.an assumption for E. Finally, we can introduce a

mixing length for the turbulence (Prandtl's mixing length
1 6 )

given by

ulu 2 = _-2(aU l /ax 2 )
2  (3)

and make an assumption for Z. Which of these three closure

schemes is used is to some extent a matter of taste although

one will sometimes be more convenient than another. The eddy

viscosity or the mixing-length method is often preferred be-

cause those methods insure that the Reynolds shear stress is

zero for zero velocity gradient (for finite e or Z). That

is usually the case, although there can be exceptions for cer-

tain asymmetric flows. Some workers prefer to use the mixing

length, because it seems to them easier to make an assumption

for a length than for an eddy viscosity or for a Reynolds shear

stress. However, it should be pointed out that the choice of

Equation (3) as the definition of the mixing length 
is itself

an assumption, since that definition is by no means the only

one that might be given. For example we might have used Tay-

lor's mixing length.
1 6 Alternatively, a mixing length £'

might be given by

u lu 2  --UI aUl/ax 2  (4)

and an assumption made for '.

Probably the most reasonable expression for the region

away from walls is Von Karman's similarity expression.
1 7 That

expression is most easily obtained by assuming that away from

boundaries, the turbulence at a point is a function only of

conditions in the vicinity of the point, in particular of the

first and second velocity derivatives at the point. In this

case it is equally convenient to use Reynolds stress, eddy vis-

cosity, or mixing length (Eq. (3)), but Equation (4) is not

used because its use would imply that the velocity relative to

the wall is important here. If we start from the Reynolds

stress and apply dimensional analysis we get

S l 22Ul =-K
2 (aUl/ax 2 ) 4

ulu2 = ulu2 x 3 - = -K a2U/x22 (5)
(a1 102)

10
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where K is the Karman constant. If we had started from the
eddy viscosity (Eq. (2)), we would have obtained, by dimen-
sional analysis,

UI  
2U 2 (aUl/ax 2 ) 3

x 2) (a2ul/ax2)2

Finally, starting from the mixing length (Eq. (3)) would give

k(2UI a 2 U1 al/Dx2I- =K (7)3x2 2 a2ul/x2(

Clearly, all three of these starting points give the same re-
sult for ulu 2.

Von Karman's hypothesis is applicable in the region away
from a wall. Close to a wall we assume that the eddy viscos-
ity, or the mixing length given by Equation (4), is a function
only of quantities measured relative to a wall, Ul and x,
and of v. The simplest assumption consistent with dimen-
sional analysis and the requirement that the effect of v
should become small for large x2 is then

E = E(UI , x 2 , v) = n2Ulx 2 (l - e-n 2 Ulx2/V) (8)

where n is an experimental constant (n = 0.124). If we had
started from Equation (4), rather than from Equation (2), we
would have obtained the equivalent expression

' = k'(U 1 , x2 , v) = n2x 2(1 - e-n2Ulx 2/) (9)

There is a third region, the so-called wake region, where
E tends to be approximately constant. That is important in
free turbulent flows, but it also occurs near the outer edge of
a boundary layer and near the center of a pipe. However, we
can often neglect it in the latter two cases, particularly if
we use 0.36 rather than 0.4 for the experimental constant K.

Equations (6) and (8) give results for flow and heat (or mass)
transfer in tubes and boundary layers which are in good agree-
ment with experiment (Figs. 17 and 18).17,18

The closure assumptions used here are by no means the only
ones that can be made. For instance Prandtl has assumed that
Z = Kx2 , where x2 is the distance from a wall, in Equa-
tion (3).16 Van Driest19 has modified that assumption by in-
troducing a damping factor:

11
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k = Kx2 1 - e (10)

where A is another experimental constant. Equation (10) ap-
pears to be reasonably applicable to the regions both close to
and away from a wall and so is sometimes considered to be more
convenient to use than Equations (6) and (8). However, there
is basically no reason why one equation should apply to both
regions. In fact, since the turbulence mechanism close to a
wall differs from that away from a wall, two equations might be
considered more reasonable.

This discussion has attempted to show how turbulence solu-
tions can be obtained by introducing simple closures into the
turbulence equations. It is hoped that it has also provided
some insight into the processes occurring in turbulence.
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